NEEL VORA

+1(682) 374-6877 \diamond San Francisco, CA, USA

 $neelvora 27@gmail.com \diamond linkedin/neelvora 27 \diamond wsslab.org/neelvora \diamond github/freaksie \diamond scholar/neelvora 27 \diamond wsslab.org/neelvora 27 \diamond wsslab.org$

Results-oriented Computer Science graduate with expertise in machine learning and software development. Dedicated to drive innovation and efficiency in machine learning model development and deployment. Seeking roles where I can leverage my expertise in ML algorithms that contribute towards impactful projects.

EDUCATION

The University of Texas at Arlington, TX, USA

Master of Science in Computer Science (Thesis)

Charmsinh Desai University, India

Bachelor in Information Technology

Aug 2022 - May 2024

(GPA: 4/4)

Aug 2019 - May 2022

(GPA: 8.21/10)

EXPERIENCE

Lawrence Berkeley National Lab, Machine Learning Engineer Intern, (CA, USA)

Aug 2023 - Present

As part of the Advance Quantum Testbed (AQT) team, I worked on the development of a machine-learning model for rapid quantum information processing and deploying these models on FPGAs and the cloud infrastructure for real-time and remote inference (Mentors: Yilun Xu, Gang Huang)

- Implemented non-Markovian noise modeling techniques to accurately characterize noise in quantum signals, resulting in a drastic reduction of the qubit readout operation time to 1µs.
- \bullet Utilized LSTM-based recurrent neural networks to classify states across 8 qubits, achieving a 98% fidelity.
- Enhanced the Digital Local Oscillator (DLO) by optimizing it through a data-driven Hierarchical Navigable Small World (HNSW) weighting technique. This led to a reduction in readout time and further improvement in fidelity.
- Enhanced memory allocation and data representation when deploying the LSTM model on FPGA at LBNL's quantum facilities, resulting in an inference overhead of just **30ns**.
- This achievement enables scientists to receive real-time feedback from the ML model regarding quantum states.

WSSLab, Machine Learning Research Intern, (MA, USA)

May 2023 - Aug 2023

In a Neuroscience-focused ML team, I played a key role in exploring compression algorithms tailored for seziure signals. Additionally, I focused on deploying these models onto edge devices for practical implementation. (Mentor: VP Nguyen)

- Developed Light Variational Auto-Encoder (LVAE) architecture to compress physiological signals, generating diverse latent spaces while minimizing information loss using KL divergence and reconstruction loss.
- Attained a compression ratio of 1:293, outperforming state-of-the-art compression algorithms like DCT, JPEG2000.
- Trained an XGBoost model on the generated latent space produced by the encoder, achieving a high accuracy of 91% in seizure detection, thereby validating the effectiveness of the latent space.
- Developed signal collection and compression pipeline on ARM cortex V8 and Nvidia Jetson Nano, enabling **real-time**, **on-chip seizure monitoring** while reducing space required to store seizure signals by 40 times.

The University of Texas at Arlington, Research Assistant, (TX, USA)

Aug 2022 - May 2023

Engaged in projects within the Sensor System Lab and Data Science Lab, with a focus on object tracking and natural language processing, respectively. (Mentors: VP Nguyen, Jacob Luber)

Data Science Lab

- Finetuned LLM (Llama 13B) on medical data for discrete information retrieval and implemented Retrieval-Augmented Generation (RAG) to enhance efficiency in information retrieval tasks.
- Utilized **Llama Index** for Personally Identifiable Information (PII) masking atop RAG before LLM inference, ensuring privacy protection of sensitive data during information retrieval processes.
- Developed a Kubernetes-based pipeline to manage workflow, leveraging efficient data management to reduce latency by 15%, facilitating seamless integration of the fine-tuned LLM model

Sensor System Lab, (NSF funded project)

- Constructed a novel **multi-modal** system based on convolutional recurrent neural networks (CRNN), integrating both acoustic and vision data for continuous UAV tracking.
- Leveraged the complementary strengths of both modalities to enhance tracking precision and reliability by 26% in low light and blockage conditions, surpassing the state-of-the-art vision-based models
- Developed an audio and video sensing pipeline in Python to collect and process hours of UAV monitoring videos and stored it in an Amazon S3 bucket using **Boto3** for subsequent utilization in training and fine-tuning models.

The Tann Mann Gaadi, Machine Learning Intern, (India)

Sept 2021 - Jun 2022

Worked within the Applied ML team focused on Recommendation Systems, specifically developing a deep learning-based ranking algorithm to enhance ads to content relevancy for OTT platforms. (Mentors: Rahul Nathan, Chiranjiv Roy)

- Developed a Key-Frame detection algorithm to enhance information gain by filtering redundant frames in video data.
- Fine-tuned a transformer-based image captioning model on a 20-hour of processed custom dataset, utilizing forward feature selection for improved performance.
- Devised interpolation techniques for creating a similarity matrix between ad and content captions, and created a platform for client audience engagement analytics using **Amazon QuickSight**.
- Developed a React-based web app integrating the model with NodeJS, deployed on AWS, and stored data on an Amazon S3 bucket, resulting in a significant 28% boost in advertisement revenue.

PUBLICATIONS

FPGA-based Machine Learning for In-situ Qubit State Discrimination on QubiC American Physical Society, (APS'2024) aps/mar24/N50.10

Real-Time Diagnostic Integrity Meets Efficiency: A Novel Platform-Agnostic Architecture for Physiological Signal Compression (*Pre-Print ArXiv 2023* arXiv:2312.12587v2)

Drone Chase: A Mobile and Automated Cross-Modality System for Continuous Drone Tracking ACM, Micro Aerial Vehicle Networks, Systems, and Applications (DroNet '23) doi.org/10.1145/3597060.3597237.

An Unobtrusive and Lightweight Ear-worn System for Continuous Epileptic Seizure Detection ($Pre-Print\ ArXiv\ 2024\ arXiv:2401.05245$)

PROJECT

Stockopedia [Code]

- Developed a JavaScript and Flask-based web platform for real-time stock analysis and data visualization using Chart.js.
- Integrated advanced machine learning techniques, including a Long Short-Term Memory (LSTM) model, for accurate stock price prediction.
- Achieved an 89% accuracy in stock price prediction by training the LSTM model on two decades' worth of historical data from the Yahoo Finance API.

SKILLS

Programming Languages: Python, C++, Java, MATLAB, JavaScript, R

Databases: MySQL, MongoDB, VectorDB, GraphQL.

Frameworks & Libraries: Pytorch, TensorFlow, Keras, Pandas, Librosa, OpenCV, Scikit-Learn, React, Flask, NodeJS,

Django, Spring Boot, RestAPI, Chart.JS, Hadoop.

Tools & Services: Git, AWS, GCP, Azure ML, CUDA, PowerBi, Postman, Docker.

EXTRA-CURRICULAR ACTIVITIES

- Visiting research scholar at The University of Massachusetts Amherst under supervision of Dr.VP Nguyen.
- Reviewer at The 30th Annual International Conference On Mobile Computing And Networking (MobiCom '24)
- Mentored group of 7 juniors as ML Team Head at Google Developer Student Clubs (GDSC).
- Ranked among top 3% participants in competitive programming competition 'Gujarat State Hackathon'.